Основные понятия информатики. Информатика, основные понятия и определения Информатика основные понятия и определения

Предисловие....................................................................................... 5

1...... ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАТИКИ.. 6

1.1... Понятие информации. 6

1.2... Свойства информации. 8

1.3... Понятие количества информации. 9

1.4... Предмет и задачи информатики. 10

1.5... Информационное общество. 13

1.6... Вопросы и тестовые задания для самоконтроля. 15

2...... СИСТЕМЫ СЧИСЛЕНИЯ И ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В ЭВМ 18

2.1... Представление (кодирование) данных. 18

2.2... Понятие об основных системах счисления. 20

2.3... Перевод чисел из одной системы счисления в другую.. 21

2.4... Двоичная арифметика. 23

2.5... Представление чисел в ЭВМ.. 23

2.6... Кодирование информации в ЭВМ.. 26

2.7... Вопросы и тестовые задания для самоконтроля. 27

3...... ЛОГИЧЕСКИЕ ОСНОВЫ ПОСТРОЕНИЯ ЭВМ.. 28

3.1... Основы алгебры логики. 28

3.2... Операции сравнения. 30

3.3... Логические операции. 31

3.4... Основы элементной базы ЭВМ.. 33

3.5... Элементы теории множеств. 35

3.6... Элементы теории графов. 37

3.7... Вопросы и тестовые задания для самоконтроля. 40

4...... ТЕХНИЧЕСКИЕ СРЕДСТВА РЕАЛИЗАЦИИ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ.. 42

4.1... История развития ЭВМ.. 42

4.2... Классификация ЭВМ.. 46

4.3... Архитектура ЭВМ.. 48

4.4... Состав персонального компьютера. 52

4.5... Внешние устройства. 59

4.6... Вопросы и тестовые задания для самоконтроля. 66

5...... СИСТЕМНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ.. 68

5.1... Базовые понятия ОС.. 71

5.2... Классификация операционных систем. 72

5.3... Файловая структура ЭВМ.. 75

5.4... Файловые системы Microsoft Windows. 77

5.5... Драйверы устройств. 78

5.6... Служебные программы.. 80

5.7... Обзор операционных систем UNIX и Linux. 82

5.8... Обзор операционных систем Windows. 84

5.9... Вопросы и тестовые задания для самоконтроля. 88

6...... ПРИКЛАДНОЕ И ИНСТРУМЕНТАЛЬНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ 90

6.1... Прикладное программное обеспечение общего назначения. 91

6.2... Прикладное программное обеспечение специального назначения. 93

6.3... Инструментальное ПО.. 94

6.4... Нумерация версий программ. 96

6.5... Правовой статус программ. 96

6.6... Текстовые редакторы и процессоры.. 98

6.7... Программы подготовки презентаций. 101

6.8... Вопросы и тестовые задания для самоконтроля. 104

7...... ЭЛЕКТРОННЫЕ ТАБЛИЦЫ.. 105

7.1... Основные понятия электронных таблиц Excel 105

7.2... Ввод, редактирование и форматирование данных. 107

7.3... Вычисления в таблицах. 108

7.4... Диаграммы.. 111

7.5... Списки. 112

7.6... Вопросы и тестовые задания для самоконтроля. 114


8...... МОДЕЛИ РЕШЕНИЯ ФУНКЦИОНАЛЬНЫХ И ВЫЧИСЛИТЕЛЬНЫХ ЗАДАЧ 116

8.1... Моделирование как метод познания. 116

8.2... Классификация моделей. 120

8.3... Компьютерное моделирование. 122

8.4... Информационные модели. 122

8.5... Примеры информационных моделей. 123

8.6... Базы данных. 124

8.7... Искусственный интеллект. 126

8.8... Вопросы и тестовые задания для самоконтроля. 127

9...... ОСНОВЫ АЛГОРИТМИЗАЦИИ.. 129

9.1... Основные этапы компьютерного решения задач. 130

9.2... Понятие алгоритма и его свойства. 131

9.3... Исполнители алгоритмов. 133

9.4... Способы описания алгоритмов. 135

9.5... Базовые управляющие структуры алгоритмов (основные алгоритмические конструкции) 142

9.6... Алгоритмы линейной структуры.. 145

9.7... Алгоритмы ветвящейся структуры.. 147

9.8... Алгоритмы циклической структуры.. 150

9.9... Способы комбинации базовых управляющих структур (основных алгоритмических конструкций) 157

9.10 Примеры комбинации основных алгоритмических структур. 158

9.11 Вопросы и тестовые задания для самоконтроля. 163

10.... ОСНОВЫ ПРОГРАММИРОВАНИЯ НА ЯЗЫКАХ ВЫСОКОГО УРОВНЯ 174

10.1 Основные понятия языков программирования. 174

10.2 Типы данных и операторы описания переменных. 179

10.3 Основные операторы.. 181

10.4 Вопросы и тестовые задания для самоконтроля. 182

11.... ОСНОВНЫЕ ОПЕРАТОРЫ ЯЗЫКА VISUAL BASIC FOR APPLICATIONS 184

11.1 Оператор присваивания. 184

11.2 Условный оператор IF … THEN. 186

11.3 Оператор выбора варианта *. 188

11.4 Операторы цикла. 191

11.5 Оператор цикла FOR … NEXT. 194

11.6 .............................................................................................................. Математические функции 196

11.7 Функции обработки строк *. 197

11.8 Функции преобразования данных. 199

11.9 Вопросы и тестовые задания для самоконтроля. 200

12.... ТЕХНОЛОГИИ ПРОГРАММИРОВАНИЯ.. 202

12.1 Концепция программирования. 202

12.2 Структурное и модульное программирование. 205

12.3 Рекурсивные алгоритмы *. 208

12.4 Объектно-ориентированное программирование. 209

12.5 Вопросы и тестовые задания для самоконтроля. 213

13.... ЯЗЫКИ И СИСТЕМЫ ПРОГРАММИРОВАНИЯ.. 215

13.1 Уровни языков программирования. 215

13.2 Системы программирования. 217

13.3 Классификация языков программирования. 218

13.4 Процедурные языки программирования. 219

13.5 Объектно-ориентированные языки. 221

13.7 Языки программирования для баз данных и компьютерных сетей. 223

13.8 Языки моделирования *. 224

13.9 Вопросы и тестовые задания для самоконтроля. 224

14.... ОСНОВНЫЕ ПОНЯТИЯ БАЗ ДАННЫХ.. 226

14.1 Задачи, решаемые с помощью баз данных. 226

14.2 Классификация БД.. 228

14.3 Реляционная модель данных. 229

14.4 Свойства полей базы данных. 231

14.5 Типы данных. 232

14.6 Безопасность и объекты баз данных. 233

14.7 Проектирование баз данных *. 236

14.8 Вопросы и тестовые задания для самоконтроля. 238

15.... ОСНОВЫ КОМПЬЮТЕРНЫХ СЕТЕЙ.. 240

15.1 Основы передачи данных. 240

15.2 Назначение и классификация сетей. 243

15.3 Сетевая модель OSI/ISO.. 246

15.4 Сетевое оборудование. 247

15.5 Основные стандарты и протоколы.. 249

15.6 Т Вопросы и тестовые задания для самоконтроля. 251

16.... ГЛОБАЛЬНАЯ СЕТЬ ИНТЕРНЕТ. 254

16.1 Подключение к Интернет. 254

16.2 Службы Интернет. 256

16.3 Поиск информации в Интернете. 261

16.4 Поиск с использованием языка запросов *. 267

16.5 Вопросы и тестовые задания для самоконтроля. 269

17.... ОСНОВЫ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ.. 270

17.1 Угрозы информационной безопасности. 270

17.2 Методы и средства защиты информации. 272

17.3 Правовые основы информационной безопасности. 276

17.4 Ответственность за преступления в области информационных технологий 278

17.5 Криптографические механизмы защиты информации. 282

17.6 Компьютерные вирусы и вредоносные программы.. 284

17.7 Методы защиты от вирусов. 287

17.8 Вопросы и тестовые задания для самоконтроля. 290

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 292

ПРЕДИСЛОВИЕ


Уровень подготовки будущего бакалавра определяется совокупностью требований ФГОС ВПО соответствующего направления. Целью изучения дисциплины «Информатика» является формирование знаний и умений, а также развитие навыков и способностей, соответствующих следующим общекультурным и профессиональным компетенциям будущего выпускника:

– способность понимать сущность и значение информации в развитии современного информационного общества, осознавать опасности и угрозы, возникающие в этом процессе;

– соблюдение основных требований информационной безопасности, в том числе защиты государственной тайны;

– владение основными методами, способами и средствами получения, хранения, переработки информации;

– наличие навыков работы с компьютером как средством управления информацией;

– способность работать с информацией в глобальных компьютерных сетях;

– готовность подготавливать презентации, научно-технические отчеты и доклады по результатам выполненных исследований;

– готовность применять информационные технологии при проектировании процессов изготовления изделий легкой промышленности;

В результате изучения дисциплины «Информатика» студент должен владеть знаниями основных понятий, изучаемых в информатике как науке; принципов и методов обработки, хранения и передачи информации; технических и программных средств реализации информационных процессов; файловых систем; моделей решения функциональных и вычислительных задач; основ алгоритмизации и программирования; языков программирования; программного обеспечения и технологии программирования; баз данных; методов работы в Интернете; общих сведений о пакетах прикладных программ; уметь использовать базовые функции текстовых, формульных и табличных процессоров, составлять алгоритмы решения типовых задач, осуществлять обмен информацией в сетях, проводить поиск информации в Интернете, работать с электронной почтой; владеть пользовательскими вычислительными системами и системами программирования; навыками использования типовых пакетов программ для обработки, текстовой и изобразительной информации, основами подготовки презентаций и отчетов.

Методика изучения дисциплины строится на основе сочетания теоретического и практического обучения. Пособие содержит основные теоретические сведения, необходимые для получения студентом базовых знаний, умений и навыков в соответствии с общекультурными и профессиональными компетенциями, указанными в матрице компетенций, представленной в учебных планах. Материалы, помеченные символом «* » (отдельные подразделы, понятия, примеры), требуют расширенного самостоятельного изучения и адресованы студентам, ориентированным на повышенный уровень подготовки.

Особое внимание в пособии уделяется системам и технологиям автоматизированного проектирования, получившим широкое применение в инженерно-конструкторской деятельности, в том числе и в легкой промышленности. Достаточно подробно, с приведением примеров решения задач различной сложности, изложен раздел «Основы алгоритмизации». Это имеет большое значение для студентов указанных направлений, так как для работы в системах автоматизированного проектирования (САПР) необходимо знание базовых понятий алгоритмизации.

Электронная версия пособия содержит интерактивные примеры, рассчитанные на демонстрацию их работы в среде Visual Basic for Applications, а также гиперссылки, обеспечивающие возможность навигации по тексту пособия. Так, в конце каждого раздела приводится гиперссылка «вернуться к содержанию».

Для активизации познавательной деятельности студентов в конце каждого раздела приводятся вопросы и тестовые задания для самоконтроля. Именно в форме тестирования проводится, например, Федеральный интернет-экзамен в сфере профессионального образования (http://фэпо.рф/).

ОСНОВНЫЕ ПОНЯТИЯ ИНФОРМАТИКИ

К основным понятиям информатики, раскрываемым в данном разделе, относятся следующие: общее представление об информации, её источники, характеристики и свойства, место и роль понятия «информация» в курсе информатики, меры и единицы количества и объёма информации, понятие о кодировании информации.

Понятие информации

Термин «информация» имеет множество определений, широко используется во многих науках и во многих сферах человеческой деятельности. Он происходит от латинского слова «informatio», означающего «сведения, разъяснения, изложение, осведомлённость». Это привычное понятие обозначает совокупность данных, сведений, знаний. В то же время строгого и общепринятого определения информации не существует. Информация в широком философском смысле – отражение реального (или вымышленного) мира, в узком прикладном – сведения, являющиеся объектом хранения, обработки и передачи.

Мы живём в материальном мире. Все физические объекты, окружающие нас, являются либо телами, либо полями. Они находятся в постоянном движении и изменении, взаимодействуют друг с другом, в результате порождаются сигналы различных типов. Любой сигнал – это изменяющийся во времени физический процесс. Такой процесс может порождать в физических телах изменения свойств. Это явление называется регистрацией сигналов. Изменения можно наблюдать, измерять, фиксировать иным способом – при этом получаются и регистрируются новые сигналы. Сигналы, зарегистрированные на материальном носителе, называются данными.

Характеристика физического процесса, используемая для представления данных, называется параметром сигнала. Если параметр сигнала принимает ряд последовательных значений и их конечное число, то сигнал называется дискретным (например, печатный текст – последовательность букв). Если параметр сигнала – непрерывная во времени функция, то сигнал называется непрерывным (например, устная речь – модулированная звуковая волна). Непрерывные сигналы можно преобразовать в дискретные. Такое преобразование называется дискретизацией .

Существует большое количество физических методов регистрации сигналов на материальных носителях. Это могут быть механические воздействия, перемещения, изменения формы или магнитных, электрических, оптических параметров, химического состава, кристаллической структуры. В соответствии с методами регистрации данные могут храниться и транспортироваться на различных носителях. Наиболее часто используемый и привычный носитель – бумага; сигналы регистрируются путём изменения её оптических свойств. Сигналы могут быть зарегистрированы и путём изменения магнитных свойств полимерной ленты с нанесённым ферромагнитным покрытием, как это делается в магнитофонных записях, и путём изменения химических свойств – в фотографии.

Данные несут информацию о событии, но не являются самой информацией, так как одни и те же данные могут восприниматься (отображаться, представляться или, ещё говорят, интерпретироваться) в сознании разных людей совершенно по-разному. Например, текст, написанный на русском языке (т.е. данные), даст различную информацию человеку, знающему алфавит и язык, и человеку, не знающему их.

Чтобы получить информацию, имея данные, необходимо к ним применить методы, которые преобразуют данные в понятия, воспринимаемые человеческим сознанием. Методы, в свою очередь, тоже различны. Например, человек, знающий русский язык, применяет адекватный метод, читая русский текст. Соответственно, человек, не знающий русского языка и алфавита, применяет неадекватный метод, пытаясь понять русский текст.

Таким образом, информация – это продукт взаимодействия данных и адекватных методов. Информация не является статическим (не изменяющимся во времени) объектом, она появляется и существует только в ходе информационного процесса – в момент диалектического взаимодействия объективных данных и субъективных методов, всё прочее время она передаётся или хранится в виде сигналов или в форме данных. Человек воспринимает первичные данные различными органами чувств (зрение, слух, обоняние, вкус, осязание), и на их основе сознанием могут быть построены вторичные абстрактные (смысловые, семантические) данные.

Без информации не может существовать жизнь. Информационные процессы присущи всем живым существам, но в особенности – человеку. Получение символьной информации (слов, знаков, формул), её анализ и генерирование составляют основу абстрактного мышления, отличающего человека от животного.

Основные функции информации в обществе: познавательная (получение новой информации); коммуникативная (общение); управленческая (формирование целесообразного поведения управляемой системы).

Свойства информации

Информация имеет большое количество разнообразных свойств. В рамках нашего рассмотрения наиболее важными являются такие свойства, как дуализм, полнота, достоверность, адекватность, доступность, актуальность. Рассмотрим их подробнее.

Дуализм информации характеризует её двойственность. С одной стороны, информация объективна в силу объективности данных, с другой – субъективна в силу субъективности применяемых методов. Иными словами, методы могут вносить в большей или меньшей степени субъективный фактор и таким образом влиять на информацию в целом. Например, два человека читают одну и ту же книгу и получают разную информацию, хотя прочитанный текст, т.е. данные, были одинаковы. Более объективная информация получается применением методов с меньшим субъективным элементом.

Полнота информации характеризует достаточность данных для принятия решения или создания новых данных на основе имеющихся. Неполный набор данных оставляет большую долю неопределённости. В то же время избыточный набор данных затрудняет доступ к нужным данным, создаёт повышенный информационный шум, что также вызывает необходимость дополнительных методов, например, фильтрации, сортировки.

Достоверность информации – степень соответствия информации реальному объекту с необходимой точностью, характеризующая отсутствие ошибок. Чем выше уровень шума по сравнению с полезным сигналом, тем ниже достоверность. В этом случае приходится использовать более сложные методы или больше данных, например, повторная передача.

Адекватность информации – степень соответствия информации действительной обстановке, реальному объекту, процессу, явлению. Неадекватная информация может получаться на основе неполных и(или) недостоверных данных, а также при использовании неадекватных методов.

Доступность информации – это возможность получения информации при необходимости. Доступность складывается из двух составляющих: из доступности данных и доступности методов.

Актуальность информации – степень соответствия текущему моменту времени. Информация, актуальная сегодня, может стать совершенно ненужной по истечении некоторого времени. Например, программа телепередач на нынешнюю неделю будет неактуальна для многих телезрителей на следующей неделе.

JPAGE_CURRENT_OF_TOTAL

Лекция 1. Предмет и основные понятия информатики

Сигналы - результат энергообмена между физическими телами или полями. При взаимодействии сигналов с физическими телами в последних возникают определенные изменения свойств - это явление называется регистрация сигналов. Такие изменения можно наблюдать, измерять или фиксировать - при этом возникают и регистрируются новые сигналы, то есть - образуются данные.

Данные - это зарегистрированные сигналы, являющиеся составной частью информации. Физический метод регистрации может быть любым: механическое перемещение тел. изменение их формы или параметров качества поверхности, изменение электрических, магнитных, оптических характеристик, химического состава и (или) характера химических связей, изменение состояния электронной системы и многое другое. В соответствии с методом регистрации данные могут храниться и транспортироваться на носителях различных типов.

Носители данных - самым распространенным носителем данных, хотя и не самым экономичным, является бумага. На бумаге данные регистрируются путем изменения оптических характеристик её поверхности. Изменение оптических свойств (изменение коэффициента отражения поверхности в определенном диапазоне длин волн) используются также в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием. В качестве носителей, использующих изменение магнитных свойств, можно назвать магнитные ленты и диски. Регистрация данных путем изменения химического состава поверхностных веществ носителя широко используется в фотографии. На молекулярном уровне происходит накопление и передача данных в живой природе.

Любой носитель можно характеризовать параметром разрешающая способность (количеством данных, записанных в принятой для носителя единице измерения) и динамическим диапазоном (логарифмическим отношением интенсивности амплитуд максимального и минимального регистрируемого сигналов). От этих свойств носителя нередко зависят такие свойства информации, как полнота, доступность и достоверность.

Информация

Информация - это совокупность данных (зарегистрированных сигналов), которая воспринимается из окружающей среды, выдается в окружающую среду или сохраняется внутри определенной системы. Информация существует в виде документов, чертежей, рисунков, текстов, звуковых и световых сигналов, электрических и нервных импульсов и т.п.

Важнейшие свойства информации:

  • о бъективность и субъективность информации - понятие объективности информации является относительным. Это и понятно, ели учесть, что сами методы обработки или сбора информации являются субъективными. Более объективной будет та информация, в которую методы вносят меньший субъективный элемент. В качестве примера можно рассмотреть фотографию и рисунок, сделанный человеком, одного и того же природного объекта. Понятно, что фотоаппарат беспристрастен и сделает объективный снимок, в отличие от человека, который может приукрасить или наоборот ухудшить вид объекта, имея свое субъективное отношение к нему;
  • полнота информации - во многом характеризует качество информации и определяет достаточность данных, для принятия решений или для создания новых данных на основе имеющихся. Чем полнее данные, тем шире диапазон методов, которые можно использовать, тем проще подобрать метод, вносящий минимум погрешностей в ход информационного процесса;
  • достоверность информации - данные возникают в момент регистрации сигналов, но не все зарегистрированные сигналы являются нужными. Всегда присутствует какой-то уровень посторонних сигналов, в результате чего образуется “информационный шум"". Чем меньше уровень “шума”, тем достовернее полученная информация;
  • адекватность информаций - это степень соответствия реальному состоянию дел. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Однако и полные, и достоверные данные могут приводить к созданию неадекватной информации в случае применения к ним неадекватных методов обработки;
  • доступность информации - мера возможности получить ту или иную информацию. На степень доступности информации влияют одновременно как доступность данных, так и доступность адекватных методов для их интерпретации. Отсутствие доступа к данным или отсутствие адекватных методов обработки данных приводит к недоступности информации. Отсутствие адекватных методов для работы с данными во многих случаях приводит к применению неадекватных методов, в результате чего образуется неполная, неадекватная или недостоверная информация;
  • актуальность информации - это степень соответствия информации текущему моменту времени. Поскольку информационные процессы растянуты во времени, то достоверная и адекватная, но устаревшая информация может приводить к ошибочным решениям. Необходимость поиска адекватного метода для работы с данными может приводить к такой задержке в получении информации, что она становится неактуальной и ненужной.

Информатика, документалистика и кибернетика.

Информатика - это комплексная, техническая наука, систематизирующая приемы создания, хранения, воспроизведения, обработки и передачи, данных средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

Появление информатики обусловлено возникновением и распространением новой технологии сбора, обработки и передачи информации, связанной с фиксацией данных на носителях различного типа.

В качестве первоисточников информатики обычно называют две науки - документалистику и кибернетику.

Термин "информатика" происходит от французского слова Informatique, образованного в результате объединения терминов Informacion (информация) и Automatique (автоматика). В англоязычных странах используется термин - Computer Science (наука о средствах вычислительной техники). Теперь эти термины являются синонимами и используются для обозначения науки о преобразовании информации, которая базируется на использовании вычислительной техники.

Документалистика - наука, основным предметом которой является изучение рациональных средств и методов повышения эффективности документооборота.

Кибернетика (от греч. kybernetike - искусство управления, от kybernao - правлю рулём, управляю), наука об управлении, связи и переработке информации. Предметом кибернетики являются принципы построения и функционирования систем автоматического управления, а основными задачами - методы моделирования процесса принятия решений техническими средствами, связь между психологией человека и математической логикой, связь между информационным процессом отдельного индивидуума и информационными процессами в обществе, разработка принципов и методов искусственного интеллекта.

Предмет и основной вопрос информатики

Информатика очень близка к технологии, поэтому ее предмет нередко называют информационной технологией.

Предмет информатики как науки составляют:

  • аппаратное обеспечение средств вычислительной техники;
  • программное обеспечение средств вычислительной техники;
  • средства взаимодействия аппаратного и программного обеспечения;
  • средства взаимодействия человека с аппаратными и программными средствами.

Как видно из этого списка, в информатике особое внимание уделяется вопросам взаимодействия. Взаимодействие в информатике обозначается термином интерфейс. Методы и средства взаимодействия человека с аппаратными и программными средствами называются - пользовательским интерфейсом. Соответственно, существуют аппаратные, программные и аппаратно-программные интерфейсы.

Основная задача информатики - это систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники.

Цель систематизации состоит в том, чтобы выделять, внедрять и развивать передовые, более эффективные технологии автоматизации этапов работы с данными, а также методически обеспечивать новые технологические исследования.

Информатика - практическая наука. Ее достижения должны проходить проверку на практике и приниматься в тех случаях, если они отвечают критерию повышения эффективности. В составе основной задачи сегодня можно выделить такие основные направления информатики для практического применения:

  • архитектура вычислительных систем (приемы и методы построения систем, предназначенных для автоматической обработки данных);
  • интерфейсы вычислительных систем (приемы и методы управления аппаратным и программным обеспечением);
  • программирование (приемы, методы и средства разработки комплексных задач);
  • преобразование данных (приемы и методы преобразования структур данных);
  • защита информации (обобщение приемов, разработка методов и средств защиты данных);
  • автоматизация (функционирование программно-аппаратных средств без участия человека);
  • стандартизация (обеспечение совместимости между аппаратными и программными средствами, между форматами представления данных, относящихся к разным типам вычислительных систем).

На всех этапах технического обеспечения информационных процессов для информатики ключевым вопросом является эффективность.

  • Эффективность аппаратных средств - это соотношение производительности оснащения к его стоимости.
  • Эффективность программного обеспечения - это производительность работающих с соответствующим программным обеспечением пользователей.
  • Эффективность программирования - это объем программного кода, созданного программистом за единицу времени.

В информатике все жестко ориентировано на эффективность. Вопрос как осуществить ту или другую операцию для информатики важный, но не основной. Основным вопросом информатики является то, как совершить данную операцию эффективно.

Информационный процесс, информационная система и информационная технология

В рамках информатики, как технической науки, можно сформулировать понятия информации, информационной системы и информационной технологии.

Информационный процесс - это некоторые действия, когда данные преобразовываются в информацию. Обработка данных включает в себя множество разных операций, основными из которых являются:

  • сбор данных - накопление информации с целью обеспечения достаточной полноты для принятия решения;
  • формализация данных - приведение данных, которые поступают из разных источников к единой форме;
  • фильтрация данных - устранение лишних данных, которые не нужны для принятия решений;
  • сортировка данных - приведение в порядок данных за заданным признаком с целью удобства использования;
  • архивация данных - сохранение данных в удобной и доступной форме;
  • защита данных - комплекс мер, направленных на предотвращение потерь, воспроизведения и модификации данных;
  • транспортирование данных - прием и передача данных между отдаленными пользователями информационного процесса. Источник данных принято называть сервером, а потребителя - клиентом;
  • преобразование данных - преобразование данных из одной формы в другую, или из одной структуры в другую, или изменение типа носителя.

Информационная система

В информатике понятие "система" чаще используют относительно набора технических средств и программ. Системой называют также аппаратную часть компьютера. Дополнение понятия "система" словом "информационная" отображает цель ее создания и функционирования.

Информационная система - это взаимосвязанная совокупность средств, методов и персонала, используемая для сохранения, обработки и выдачи информации с целью решения конкретной задачи.

Современное понимание информационной системы предусматривает использование компьютера, как основного технического средства обработки информации. Компьютеры, оснащенные специализированными программными средствами, являются технической базой и инструментом информационной системы.

В работе информационной системы можно выделить следующие этапы:

  1. Зарождение данных - формирование первичных сообщений, которые фиксируют результаты определенных операций, свойства объектов и субъектов управления, параметры процессов, содержание нормативных и юридических актов и т.п. -
  2. Накопление и систематизация данных - организация такого их размещения, которое обеспечивало бы быстрый поиск и отбор нужных сведений, методическое обновление данных, защита их от искажений, потерь, деформирования и др.;
  3. Обработка данных - процессы, вследствие которых на основании прежде накопленных данных формируются новые виды данных: обобщающие, аналитические, рекомендательные, прогнозные. Производные данные тоже можно обрабатывать, получая более обобщенные сведения;
  4. Отображение данных - представление их в форме, пригодной для восприятия человеком. Прежде всего - это вывод на печать, то есть создание документов на, так называемых, твердых (бумажных) носителях. Широко используют построение графических иллюстративных материалов (графиков, диаграмм) и формирование звуковых сигналов.

Подавляющее большинство информационных систем работает в режиме диалога с пользователем. Типичные программные компоненты информационных систем включают:

  • диалоговую подсистему ввода-вывода;
  • подсистему прикладной логики обработки данных;
  • подсистему логики управления данными.

Значительная часть функциональных возможностей информационных систем закладывается в системном программном обеспечении: операционных системах, системных библиотеках и конструкциях инструментальных средств разработки.

Кроме программной составной информационных систем важную роль играет информационная составная, которая задает структуру, атрибутику и типы данных, а также тесно связана с логикой управления данными.

Для сетевых информационных систем важным элементом является коммуникационный сервис, обеспечивающий взаимодействие узлов сети при общем решении задачи.

Информационные технологии

Технология - это способ освоения человеком материального мира с помощью социальноорганизованной деятельности, которая включает три компоненты:

  • информационную (научные принципы и обоснование);
  • материальную (орудие работы);
  • социальную (специалисты, имеющие профессиональные навыки).

Эта триада составляет сущность современного понимания - технологии.

Понятие информационной технологии появилось с возникновением: информационного общества, основой социальной динамики в котором являются не традиционные материальные, а информационные ресурсы: знания, наука, организационные факторы, интеллектуальные способности, инициатива, творчество и т.д. Наиболее удачным определением понятия информационной технологии дано академиком Глушковым В.М., который трактовал ее как человеко-машинную технологию сбора, обработки и передачи информации, которая базируется на использовании вычислительной техники . Эти технологии быстро развиваются, охватывая все виды общественной деятельности.

Информа́тика - наука о способах получения, накопления, хранения, преобразования, передачи, защиты и использования информации . Она включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные , вроде анализа алгоритмов , так и довольно конкретные, например, разработка языков программирования .

Информационные ресурсы - Различные формализованные знания (теории, идеи, изобретения), данные (в том числе документы), технологии и средства их сбора, обработки, анализа, интерпретации и применения, а также обмена между источниками и потрбитеелями информации.

Информационная технология -1.Совокупность научных дисциплин, занимающихся изучением, созданием и применением методов, способов, действий, процессов, средств, правил, навыков, используемых для получения новой информации (сведений, знаний), сбора, обработки, анализа, интерпретации, выделения и применения данных, контента и информации с целью удовлетворения информационных потребностей народного хозяйства и общества в требуемом объёме и заданного качества.

Количество информации можно рассматривать как меру уменьшения неопределенности знания при получении информационных сообщений.

Рассмотренный выше подход к информации как мере уменьшения неопределенности знания позволяет количественно измерять информацию. Существует формула, которая связывает между собой количество возможных информационных сообщений N и количество информации I, которое несет полученное сообщение:

единицы измерения количества информации. Минимальной единицей измерения количества информации является бит, а следующей по величине единицей - байт, причем:

1 байт = 8 битов = 2 3 битов.

В информатике система образования кратных единиц измерения несколько отличается от принятых в большинстве наук. Традиционные метрические системы единиц, например Международная система единиц СИ, в качестве множителей кратных единиц используют коэффициент 10 n , где n = 3, 6, 9 и т. д., что соответствует десятичным приставкам "Кило" (10 3), "Мега" (10 6), "Гига" (10 9) и т. д.

В компьютере информация кодируется с помощью двоичной знаковой системы, и поэтому в кратных единицах измерения количества информации используется коэффициент 2 n

Так, кратные байту единицы измерения количества информации вводятся следующим образом:

1 килобайт (Кбайт) = 2 10 байт = 1024 байт;

1 мегабайт (Мбайт) = 2 10 Кбайт = 1024 Кбайт;

1 гигабайт (Гбайт) = 2 10 Мбайт = 1024 Мбайт.

2. Определение медицинской информатики, как прикладной науки. Задачи, решаемые методами медицинской информатики.

Медицинская информатика – это наука, занимающаяся исследованием процессов получения, передачи, обработки, хранения, распространения, представления информации с использованием информационной техники в медицине и здравоохранении.

Объект изучения медицинской информатики – это информационные технологии, реализуемые в здравоохранении.

Основной целью медицинской информатики является оптимизация информационных процессов в медицине и здравоохранении за счет использования компьютерных технологий, обеспечивающая повышения качества охраны здоровья населения.

Задачи,решаемые мед иформатикой:

    мониторинг состояния здоровья разных групп населения,в т.ч. пациентов групп риска и лиц с социально значимыми заболеваниями

    консультативная поддержка в клинической медицине (диагностика,прогнозирование, лечение) на основе вычислительныз процедур и(или) моделирования логики принятия решений врачами

    переход к электронным историям болезни и амбулаторным мед. картам,включая расчеты по лечению застрахованных больных(обязательное и добровольное страхование по различным схемам)

    автоматизация функциональной и лабораторной диагностики

Медицинская диагностика

Разработка и внедрение информационных систем в области медицинских технологий является достаточно актуальной задачей. Анализ применения персональных ЭВМ в медицинских учреждениях показывает, что компьютеры в основном используются для обработки текстовой документации, хранения и обработки баз данных, статистики. Часть ЭВМ используется совместно с различными диагностическими и лечебными приборами. В большинстве этих областей использования ЭВМ применяют стандартное программное обеспечение – текстовые редакторы, СУБД и др. Поэтому создание информационной организационно-технической системы, способной своевременно и достоверно установить диагноз больного и выбрать эффективную тактику лечения, является актуальной задачей информатизации

Системы управления лечебным процессом

К системам управления процессами лечения и реабилитации относятся автоматизированные системы интенсивной терапии, биологической обратной связи, а также протезы и искусственные органы, создаваемые на основе микропроцессорной технологии.

В системах управления лечебным процессом на первое место выходят задачи точного дозирования количественных параметров работы, стабильного удержания их заданных значений в условиях изменчивости физиологических характеристик организма пациента.

Под автоматизированными системами интенсивной терапии понимают системы, предназначенные для управления состоянием организма в лечебных целях, а также для его нормализации, восстановления естественных функций органов и физиологических систем больного человека, поддержания их в пределах нормы. По реализуемой в них структурной конфигурации системы интенсивной терапии разделяют на два класса – системы программного управления и замкнутые управляющие системы.

К системам программного управления относятся системы для осуществления лечебных воздействий. Например, различная физиотерапевтическая аппаратура, оснащенная средствами вычислительной техники, устройства для вливаний лекарственных препаратов, аппаратура для искусственной вентиляции легких и ингаляционного наркоза, аппараты искусственного кровообращения.

3. Топологии сетей. Примеры. Технические характеристики. Технология Ethernet. Топология сети – геометрическая форма и физическое расположение компьютеров по отношению к друг другу. Топология сети позволяет сравнивать и классифицировать различные сети. Различают три основных вида топологии:

1) Звезда;

2) Кольцо;

ШИННАЯ ТОПОЛОГИЯ

При построении сети по шинной схеме каждый компьютер присоединяется к общему кабелю, на концах которого устанавливаются терминаторы.

Сигнал проходит по сети через все компьютеры, отражаясь от конечных терминаторов.

Шина проводит сигнал из одного конца сети к другому, при этом каждая рабочая станция проверяет адрес послания, и, если он совпадает с адресом рабочей станции, она его принимает. Если же адрес не совпадает, сигнал уходит по линии дальше. Если одна из подключённых машин не работает, это не сказывается на работе сети в целом, однако если соединения любой из подключенных машин м нарушается из-за повреждения контакта в разъёме или обрыва кабеля, неисправности терминатора, то весь сегмент сети (участок кабеля между двумя терминаторами) теряет целостность, что приводит к нарушению функционирования всей сети.

Достоинства:

1) Отказ любой из рабочих станций не влияет на работу всей сети.

2) Простота и гибкость соединений.

3) Недорогой кабель и разъемы.

4) Необходимо небольшое количество кабеля.

5) Прокладка кабеля не вызывает особых сложностей.

Недостатки

1) Разрыв кабеля, или другие неполадки в соединении может исключить нормальную работу всей сети.

2) Ограниченная длина кабеля и количество рабочих станций.

3) Трудно обнаружить дефекты соединений.

4) Невысокая производительность.

5) При большом объеме передаваемых данных главный кабель может не справляться с потоком информации, что приводит к задержкам.

ТОПОЛОГИЯ «КОЛЬЦО»

Эта топология представляет собой последовательное соединение компьютеров, когда последний соединён с первым. Сигнал проходит по кольцу от компьютера к компьютеру в одном направлении. Каждый компьютер работает как повторитель, усиливая сигнал и передавая его дальше. Поскольку сигнал проходит через каждый компьютер, сбой одного из них приводит к нарушению работы всей сети.

ТОПОЛОГИЯ «ЗВЕЗДА»

Топология «Звезда» - схема соединения, при которой каждый компьютер подсоединяется к сети при помощи отдельного соединительного кабеля. Один конец кабеля соединяется с гнездом сетевого адаптера, другой подсоединяется к центральному устройству, называемому концентратором (hub).

Устанавливать сеть топологии «Звезда» легко и недорого. Число узлов, которые можно подключить к концентратору, определяется возможным количеством портов самого концентратора, однако имеются ограничения по числу узлов (максимум 1024). Рабочая группа, созданная по данной схеме может функционировать независимо или может быть связана с другими рабочими группами.

Достоинства

1) Подключение новых рабочих станций не вызывает особых затруднений.

2) Возможность мониторинга сети и централизованного управления сетью

3) При использовании централизованного управления сетью локализация дефектов соединений максимально упрощается.

4)Хорошая расширяемость и модернизация.

Недостатки

1) Отказ концентратора приводит к отключению от сети всех рабочих станций, подключенных к ней.

2) Достаточно высокая стоимость реализации, т.к. требуется большое количество кабеля.

Локальная сеть Ethernet – стандарт организации локальных вычислительных систем, используемых для соединения устройств, находящихся на небольшом удалении друг от друга (в одном здании, группе зданий).

Сеть Ethernet может иметь шинную или звёздную топологию. В качестве среды передачи могут быть использованы любые типы кабелей, а также радиочастоты (radioEthernet).

Спецификация Ethernet предусматривает несколько стандартов физического уровня, определяющих вид кабельных систем и сетевой топологии при организации сетей.

4. Открытый и закрытый исходный код. Примеры ОС с открытым (ОПС) и закрытым исходным кодом. Перечень и характеристики достоинств и недостатков ОПС и проприаторных ОС Открытое программное обеспечение (англ. open-source software) - программное обеспечение с открытым исходным кодом. Исходный код таких программ доступен для просмотра, изучения и изменения, что позволяет пользователю принять участие в доработке самой открытой программы, использовать код для создания новых программ и исправления в них ошибок - через заимствование исходного кода, если это позволяет совместимость лицензий, или через изучение использованных алгоритмов, структур данных, технологий, методик и интерфейсов

Linux, Mozilla (ядро браузера Netscape), Apache (Web-сервер), PERL (язык подготовки Web-сценариев) и PNG (формат графических файлов), существует еще множество примеров очень популярного программного обеспечения, которое базируется на использовании открытых исходных кодов

Закрытый исходный код" - программа, лицензия которой не подходит под определение открытого ПО. Как правило, это означает, что распространяются только бинарные (откомпилированные) версии программы и лицензия подразумевает отсутствие доступа к исходному коду программы, что затрудняет создание модификаций программы. Доступ к исходному коду третьим лицам обычно предоставляется при подписании соглашения о неразглашении.

ОС MS Windows, минусы .

Сравнительно высокая стоимость. В самом дешевом варианте это более 50 долларов США, притом, что такая "дешевая" Windows, приобретаемая в комплекте с новым компьютером, "привязана" к этому компьютеру. А это значит, что, меняя компьютер, вам снова придется тратить деньги на Windows. Варианты Windows независимые от компьютера имеют цену ближе к двумстам долларов США и выше. И это стоимость Windows для одного компьютера. И если вам нужна ОС, например, на пять компьютеров, которые уже у вас есть (не новые), то придется выложить за пять копий Windows около тысячи долларов.

Очень большое количество вредоносных программ (так называемые компьютерные вирусы). Для версии Windows XP это особо серьезная проблема, которая вынуждает конечного пользователя нести дополнительные расходы. Либо на покупку хорошей антивирусной программы либо на обращение к специалистам в случаях, когда вредоносные программы делают невозможной нормальную работу ОС Windows. Эту проблему можно уменьшить за счет квалифицированной настройки ОС Windows и аккуратного ее использования в ситуациях риска, главная из которых Интернет.

преимущества и недостатки открытого ОС MS Windows, плюсы .

Поддержка очень большого ассортимента компьютерного оборудования. Какая бы экзотическая "железяка" вам не попалась, почти наверняка вы сможете ее использовать под Windows. Хотя быть может вам и потребуется время на поиски нужной программы-драйвера.

Огромное количество прикладных программ, на сегодняшний день это уже, наверное, более ста тысяч наименований. Для любой прикладной задачи на платформе Windows есть как минимум несколько десятков, для популярных задач существуют сотни программ. Большое количество специалистов, которые более или менее хорошо знают семейство ОС Windows. То есть, если вам потребуется помощь, вы ее найдете легко и за умеренную цену.

ОС GNU/Linux, плюсы .

Сравнительно низкая стоимость. В более или менее большом городе вполне реально получить диск с каким-либо дистрибутивом Linux по цене чистого CD\DVD диска, обратившись к энтузиастам, распространяющим Linux.. Также по почте можно совсем бесплатно получить CD диск с дистрибутивом Ubuntu Linux. При этом, имея всего одну физическую копию дистрибутива Linux, вы получаете право установить его на любое количество компьютеров. То есть, возвращаясь, к примеру, о пяти компьютерах, если вы купите одну копию дистрибутива Linux за 300 рублей это будут все ваши расходы на пять компьютеров - вам не нужно будет покупать пять копий. Итак, с одной стороны (Windows) около тысячи долларов, с другой стороны (Linux) примерно 300 рублей (или даже меньше этого).

Практическое отсутствие, по крайней мере, на сегодняшний день, вредоносных программ для этой платформы. Что позволяет избежать дополнительных расходов по предотвращению или ликвидации ущерба от вредоносных программ.

Независимость от разработчика. Если вам потребовалась какая-то функциональность, отсутствующая в ОС Linux, вы может ее добавить своими собственными усилиями. Такая возможность есть благодаря тому, что ОС Linux распространяется не только в бинарном виде, но и в исходных кодах, причем нет никаких запретов на модификацию этих исходных кодов.

ОС GNU/Linux, минусы .

Значительно меньшее, чем для платформы Windows, количество прикладных программ. Более того, если речь идет о некоторых программах - безусловных лидерах в своих прикладных областях, то под ОС Linux нет ни соответствующих версий самих этих программ, ни других, сопоставимых по функциональности программ. К таким прикладным программам относятся продукты компании Adobe, экономические программы 1С, программа инженерного проектирования AutoCAD, программы распознавания текстов (FineReader

Меньшее, чем для платформы Windows, количество хороших или приличных специалистов. То есть, если вам потребуется помощь, то найти человека, достаточно хорошо разбирающегося в Linux, будет не так просто. Вполне возможно, что и стоимость услуг такого специалиста будет выше, чем в случае с Windows.

5. Понятие о лицензии на ПО, лицензионном и нелицензионном ПО. Исходный код . Исхо ́ дный код (также исхо ́ дный текст ) - текст компьютерной программы на каком-либо языке программирования или языке разметки , который может быть прочтён человеком. В обобщённом смысле - любые входные данные для транслятора .

Лице ́ нзия на програ ́ ммное обеспе ́ чение - это правовой инструмент, определяющий использование и распространение программного обеспечения , защищённого авторским правом . Обычно лицензия на программное обеспечение разрешает получателю использовать одну или несколько копий программы, причём без лицензии такое использование рассматривалось бы в рамках закона как нарушение авторских прав издателя.

1.Определение информатики

Информатика - это техническая наука, изучающая приемы создания, хранения, воспроизведения, обработки и передачи данных средствами вычислительной техники, а также принципы функционирования этих средств и методы управления ими.

Предмет информатики есть информационная технология, которая включает:

Аппаратное обеспечение средств вычислительной техники (ВТ);

Программное обеспечение средств ВТ;

Средства взаимодействия аппаратного и программного обеспечения;

Средства взаимодействия человека с аппаратными и программными средствами.

Взаимодействие - интерфейс.

Методы и средства взаимодействия человека с аппаратными и программными средствами называют пользовательским интерфейсом.

Интерфейсы:

· аппаратные;

· программные;

· аппаратно-программные.

Основная задача информатики - систематизация приемов и методов работы с аппаратными и программными средствами вычислительной техники.

Цель систематизации состоит в выделении, внедрении и развитии передовых, наиболее эффективных технологий, в автоматизации этапов работы с данными, а также в методическом обеспечении новых технологических исследований.

На всех этапах технического обеспечения информационных процессов для информатики ключевым понятием является эффективность.

Для аппаратных средств под эффективностью понимают отношение производительности оборудования к его стоимости (с учетом стоимости эксплуатации и обслуживания).

Для программного обеспечения под эффективностью понимают производительность лиц, работающих с ними (пользователей).

В программировании под эффективностью понимают объем программного кода, создаваемого программистами в единицу времени.

Информатика - практическая наука.

Выделим следующие направления для практических приложений:

1) архитектура вычислительных систем (приемы и методы построения систем, предназначенных для автоматической обработки данных);

2) интерфейсы вычислительных систем (приемы и методы управления аппаратным и программным обеспечением);

3) программирование (приемы, методы и средства разработки компьютерных программ);

4) преобразование данных (приемы и методы преобразования структур данных);

5) защита информации (обобщение приемов, разработка методов и средств защиты данных);

6) автоматизация (функционирование программно-аппаратных средств без участия человека);

7) стандартизация (обеспечение совместимости между вычислительными системами различных типов).

Термин ИНФОРМАТИКА

informacion automatique

информация автоматика

автоматическая обработка информации

Используется во Франции и странах Восточной Европы; в США и Западной Европе – Computer Science (наука о средствах вычислительной техники).

Количество компьютеров в мире более 500 млн. единиц!

Каждый по-своему уникален.

В среднем 1 раз в 1,5 года удваиваются основные параметры аппаратных средств;

1 раз в 2-3 года меняются поколения программного обеспечения;

1 раз в 5-7 лет меняется база стандартов, протоколов и интерфейсов.

Отличие ИНФОРМАТИКИ от других технических наук заключается в том, что ее предмет меняется ускоренными темпами.

От специалистов требуется широкий уровень знаний и практических навыков.

2.История развития вычислительной техники

1623г - механическое устройство для выполнения сложения (на базе механических часов); автор- Вильгельм Шикард; университет Тюбингена, Германия.

1642г - француз Блез Паскаль разработал более компактное суммирующее устройство - первый механический калькулятор, выпускался серийно .

1673г – немец Г. В. Лейбниц создал механический калькулятор, который выполнял 4 арифметических действия.

В 18 веке (эпоха Просвещения) появились более совершенные модели, но они оставались механическими .

Идея программного управления вычислениями принадлежит английскому математику Чарльзу Бэббиджу (1792-1871).

Аналитическая машина Бэббиджа.

Огаста Ада Лавлейс (леди Байрон).

В 20 веке идеи Бэббиджа получили развитие в работах Джона фон Неймана (1941, 1946гг).

3.Представление информации в ЭВМ

Информация- это сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специализированным устройством для обеспечения целенаправленной деятельности.

Информация:

текстовая

числовая

Информация графическая

звуковая

видео и т. д.

Для представления информации в ЭВМ используется принцип двоичного кодирования, т. е. элементы информации любого типа кодируются последовательностями двух знаков 0 и 1.

0 и 1 – цифры двоичной системы счисления (binary digit).

Система счисления – совокупность приемов наименования и записи чисел.

Примеры.

Единицы представления информации

8 битов=1 байт;

1Кбайт=210 байтов (1024 байтов);

1Мбайт=210 Кбайтов =220 байтов;

1Гбайт=210 Мбайтов =220 Кбайтов.

4.Принципы построения ЭВМ

ЭВМ - комплекс технических и программных средств для автоматизации подготовки и решения задач пользователей.

Абстрактная модель ЭВМ - машина фон Неймана.

Рисунок 1- Машина фон Неймана

Обозначения:

ЦП - центральный процессор;

УУ – устройство управления;

АЛУ – арифметико-логическое устройство;

передача данных;

передача управляющих сигналов.

Принципы фон Неймана:

1. принцип линейности и однородности памяти;

2. принцип хранимой программы;

3. принцип неразличимости команд и данных;

4. принцип последовательного исполнения команд;

5. принцип автоматической работы (программного управления).

5.Классификация ЭВМ

Классификация по назначению:

· большие ЭВМ;

· мини ЭВМ;

· микро ЭВМ;

· персональные ЭВМ (ПЭВМ, ПК).

ПЭВМ – самый массовый тип, и составляют ≈80% от всех компьютеров в мире.

Фирма IBM- крупнейший производитель компьютеров; до 2005г 80% ее продукции – ПЭВМ.

Одна из основных характеристик ПЭВМ - тип используемого микропроцессора (м/пр).

Рынок м/пр очень динамичен: каждые год-два обновляются основные типы.

Intel: Pentium, Celeron.

AMD: Athlon, Sempron.

Важнейшие характеристики ПК – объем оперативной памяти (ОП) и быстродействие.

Объем памяти определяется количеством хранимой информации, быстродействие - количеством операций в единицу времени (тактовой частотой процессора).

Объем ОП 32 Кб – 4Гб;

частота 1Ггц и более.

Память ПК:

· оперативная память (32 Кб – 4Гб);

· кэш-память(256Кб-2Мб);

· внешняя память (емкость зависит от типа запоминающего устройства).

Внешняя память:

· дискета (1,4Мб);

· винчестер или жесткий диск (десятки и сотни Гб);

· компакт-диски или CD-ROM (сотни Мб);

· DVD-диски (десятки Гб);

· флэш-память (64,128,256,512Мб,

· магнитооптические диски (десятки Гб).

Емкость памяти определяет, какие программные продукты могут быть установлены на ПК.

Например, ОС Windows 2000 требует объем винчестера не менее 600 Мб и не менее 64 Мб ОП;

ОС Windows XP- соответственно 1Гб и 256Мб.

ПК-это совокупность аппаратных и программных средств, вычислительная система.

Базовая

аппаратная конфигурация ПК:

1. системный блок;

2. монитор;

3. клавиатура;

4. манипулятор мышь.

Системный блок – узел, внутри которого расположены основные компоненты ПК: процессор, память, видеокарта.

Монитор – устройство отображения информации; характеризуется размером видимой части экрана по диагонали; измеряется в дюймах(17’’,19’’и т. д.).

Для ЭЛ мониторов качество-размер зерна (0,24мм).

Для ЖК мониторов:

разрешение 1280х1024;

угол обзора (160о);

яркость 300;

контрастность 1000.

Клавиатура и мышь - устройства управления компьютером.

Монитор и клавиатура – простейший интерфейс пользователя.

Периферийные устройства.

Информатика - это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и методы ее создания, хранения, поиска, преобразования, передачи и применения в различных сферах человеческой деятельности.

Термин информатика происходит от французского слова Informatique и образован из двух слов: информация и автоматика. Этот термин введен во Франции в середине 1960-х годов, когда началось широкое использование вычислительной техники. Тогда в англоязычных странах вошел в употребление термин Computer Science для обозначения науки о преобразовании информации, - науки, базирующейся на использовании вычислительной техники. Теперь эти термины стали синонимами.

Задачи информатики :

    исследование информационных процессов любой природы;

    разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов;

    решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни.

В составе основных задач информатики сегодня можно выделить такие основные направления информатики для практического применения:

    pазpаботка вычислительных систем и пpогpаммного обеспечения;

    теория информации, изучающая процессы, связанные с передачей, приемом, преобразованием и хранением информации;

    математическое моделирование, методы вычислительной и прикладной математики и прикладных исследований в различных областях знаний;

    методы разработки искусственного интеллекта, моделирующие методы логического мышления и обучения в интеллектуальной деятельности человека (логический вывод, обучение, понимание речи, визуальное восприятие, игры и др.);

    биоинформатика, изучающая информационные процессы в биологических системах;

    социальная информатика, изучающая процессы информатизации общества;

    методы машинной графики, анимации, средства мультимедиа;

    телекоммуникационные системы и сети, в том числе глобальные компьютерные сети, объединяющие все человечество в единое информационное сообщество.

1.2. Понятие информации

В основе понятия Информатика лежит термин Информация , который имеет различные толкования:

    в обиходе информацией называют любые данные или сведения, которые кого-либо интересуют;

    в технике под информацией понимают сообщения, передаваемые в форме знаков или сигналов;

    в кибернетике под информацией понимают ту часть знаний, которая используется для ориентирования, активного действия, управления, т.е. в целях сохранения, совершенствования, развития системы.

Есть и другие определения.

Информация - сведения об объектах и о явлениях окружающей среды, их параметрах, свойствах и состоянии, которые уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде.

Свойства информации

Оперативность - отражает актуальность информации для необходимых расчетов и принятия решений в изменившихся условиях.

Точность - определяет допустимый уровень искажения как исходной, так и результатной информации, при котором сохраняется эффективность функционирования системы.

Достоверность - определяется свойством информации отражать реально существующие объекты с необходимой точностью.

Устойчивость - отражает способность информации реагировать на изменения исходных данных без нарушения необходимой точности.

Достаточность (полнота) - означает, что информация содержит минимально необходимый объем сведений для принятия правильного решения. Неполная информация (недостаточная для принятия правильного решения) снижает эффективность принимаемых пользователем решений; избыточность обычно снижает оперативность и затрудняет принятие решения, но делает информацию более устойчивой.

Адекватность - это определенный уровень соответствия создаваемого с помощью информации образа реальному объекту, процессу, явлению и т.п.

Безопасность